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The downward reflection of acoustic-gravity waves produced in an isothermal at- 
mosphere by the exponential increase with altitude of the kinematic viscosity is in- 
vestigated. The problem is more general than those previously considered in [1, 21. The 
ordinary differential equations for harmonic oscillations were integrated numerically by 
a modification of a procedure due to Conte [6], and the dependence of the reflection 
coefficient on the horizontal wave number k and the vertical wave number /? was ob- 
tained. It was found that, in contrast to the results for a stratified inviscid fluid [I], the 
magnitude of the reflection coefficient depends on k. The deviation from previous 
results is greatest when k and p are of the same order of magnitude and not too large or 
too small. 

I. INTRODUCTION 

It is well known that acoustic-gravity waves which travel upward in a stratified 
“atmosphere” may be reflected downward if the mean temperature varies with 
height. They may also be reflected if dissipative forces are present, provided these 
increase rapidly with height Z. This was demonstrated in [l] by means of a simple 
model of two-dimensional waves in an incompressible stratified fluid with 
exponentially decreasing density P(Z) and constant dynamic viscosity ,u (i.e., with 
exponentially increasing kinematic viscosity ,~/p(z)). It was found that the magni- 
tude of the reflection coefficient / KR 1 tends to exp(--2923/L) as ,u -+ 0 (H is the 
density scale height, L the vertical wave length). This result contains the somewhat 
surprising feature that the reflection does not depend on the horizontal wave length. 

A similar problem for a viscous isothermal atmosphere was considered in [Z], 

* The work of the second author was supported by the Atmospheric Sciences Program, 
National Science Foundation, under grant GA-748. 
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but only for vertically propagating acoustic waves, and the same asymptotic 
formula for the reflection coefficient was found to hold (see also [3]). On the 
other hand, Lindzen showed in [4] that this same result is valid for atmospheric 
tidal waves when dissipation is introduced through the mechanism of Newtonian 
cooling rather than through viscosity (see also [5]). This led him to the conjecture 
that the asymptotic value of 1 KR / is independent of the details of the fluid model. 
Our work will show that this is not always the case. 

We will consider small two-dimensional oscillations in a compressible isothermal 
atmosphere with a constant dynamic viscosity coefficient. This problem is ana- 
lytically considerably more complicated than the ones referred to above, and we 
have, therefore, resorted to a numerical study. The numerical problem itself is 
not trivial since it requires the computation of solutions of a system of differential 
equations which is inherently unstable, i.e., one which possesses solutions with 
widely differing rates of growth. The method employed here is a modification of 
a procedure due to Conte [6]. It will be described briefly in Section 3; a more 
complete description and an error analysis is given in [7]. 

It was found that / KR 1 < exp(-29H/L), and that it depends on the horizontal 
scale of the motion. The greatest deviation from exp(-2GH/L) takes place when 
the horizontal and vertical wave lengths are comparable to each other, while 
for large and small ratios of these lengths the previously obtained asymptotic 
formula is accurate. This is consistent with the results in [2] and [4]. The deviation 
was found to be much larger for acoustic waves than for gravity waves, and for 
some cases 1 I(R ( was not even a monotonic function of H/L. 

II. FORMULATION OF THE PROBLEM 

We will consider small oscillations of a viscous, thermally nonconducting fluid 
about a state of hydrostatic equilibrium with uniform temperature. Let the 
quantities which characterize the equilibrium state be denoted by the subscript 0. 
Then, 

To = const, pa(z) = ~~(0) ePiH, ho@) = gffpo(4, (1) 

where H = RT,I,o is the density scale height and 0 < z < co. The linearized 
equations for the perturbed quantities are? 

pout + pz = PAL{ + &4div vL , (24 
powt $- pz -t gp = +IIV + +p(div v), , (2b) 

l See Table I. 

pt + po(div v) + u!po’ = 0, cw 
pt + c2pu div v - gp,M: = 0, (24 
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TABLE I 

Table of Symbols 

x, z Horizontal and vertical cordinates 
Y = [u, W] Velocity vector, with horizontal component II and vertical component w 
u, w Oscillation amplitudes, defined in (4) 

Y = [U, WI 

P Pressure 

P Density 
T TeMperatIXe 
R Gas constant 
II Density scale height 

Y Ratio of specific heats 

P Dynamic viscosity coefficient 
c Speed of sound 
iv Brunt-Vaisala frequency 
k Horizontal wave number 

B Vertical wave number 
CT Frequency 
A = @/ax? + aa/azs 

E Dimensionless parameter defined in (5) 

01, x Parameters defined in (9) 

< = e-z/ica 

a = Wld5) 
Partial derivatives are denoted by subscripts. 

where the prime denotes differentiation with respect to z, and the dynamic viscosity 
coefficient iu, is assumed to be a small constant. Eliminating p and p yields two 
equations for the velocity components u and XI: 

PO{% + w, - c”(div v),> = ~[du + $ div v]ib , 

poCwtt + gw, - c2(div v)- + (NT/g) div v> = ,u[Au + Q div v’Jt 5 

where N is the Brunt-VBisBl5 frequency, defined by 

Letting 

N” -=- 
g ( ++s,d!$ 

u(x, z, t) = U(z) exp i(kx - ~tj, 

w(x, z, t) = iW(zj exp i(kx - utj, 
iLz> 
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and introducing the dimensionless quantities 

2 = z/H, x” = x/H, &=kH, a = u(H/g)l:?, 
(5) 

PC4 = Po(z)/Pom E= yp,~~ H2 (H/g>‘/“, 

one obtains a system of ordinary differential equations: 

Ay” + By’ + Cy = 0, (6) 

where y is the vector with components U and Wand 

0 
B= 

Jz p-y) 
i 

k(p-+) 
. I 

mp ’ 
(7) 

C= 
p (kz - $-) - imikkz 

-g--l 
Y p 

Here p = e-z and the tilde has been omitted since only the dimensionless quantities 
will be considered from now on. 

It will be assumed for simplicity that the motion is excited by an oscillation of 
the boundary at z = 0, which results in the (normalized) boundary condition 

U(0) = 0, W(0) = 1. (8) 

For sufficiently small values of the parameter E the viscous terms in (6) are negligible 
in any finite interval outside of a thin boundary layer near z = 0. Thus, any 
solution y(z, E) of (6) behaves approximately like some solution yINv(z) of the 
inviscid problem in any interval [zl , z,], where 0 < z, < z, < co. More precisely, 
y(z, E) + yINv(z) uniformly in [zr , Z z ] as E + 0. The boundary layer serves to 
reduce U(z) to zero at the boundary, and has a negligible effect on W(z). Thus, 
the exact nature of the forcing mechanism is largely unimportant in this study, 
since it is concerned with reflection from the upper layers. 

As is well known, the inviscid problem (obtained by setting E = 0 in (6)) has 
two exponential solutions, exp(X,z) and exp(&z), with 

A, = 8 + (& - ay, 

Al = 8 + $3, 

A, = * - ($ - q)ll”, 

A, = 4 - $3, 

if 01 < a, (94 

if 01 > $, Pb) 
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where 

If cx = 4 there are two solutions of the form 

p/p and z.@P. 19c‘ \ ! 

In cases (9a) and (SC), solutions correspond to waves which propagate horizontally. 
Corresponding to (9b) one has solutions of the form 

e’/z[a, exp(kx + /3z - ot) + a2 exp@x - /3z - ot)], (10) 

which represent an incident and a reflected wave, the reflection being produced 
in the region where the viscous terms in (6) are no longer negligible. One of the 
objects of this investigation is to compute the reflection coeffcient (i.e., the ratio 
of the two complex amplitudes) as a function of the wave parameters G and k. 
Another solution of interest is the Lamb wave [g]: 

CT = \i”y k, Y = [;j expKy - 9 zh4 (a 1) 

which represents a free oscillation in the presence of a rigid boundary at z = 0, 
since W(0) = 0. The situation is represented schematically in Fig. 1, where the 
two shaded regions correspond to the travelling wave solutions of case (9b). 
Although these designations are somewhat arbitrary and inaccurate, we will refer 
to the solutions in the region marked A as acoustic waves, those from the region G 
as gravity waves. 

0 
0 0.4 0.8 1,2 1.6 2.c 

k 

FIG. 1. Inviscid dispersion relation for y = 1.4. 
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To complete the formulation it will be assumed that physically relevant solutions 
satisfy the “dissipation condition” (DC) that the average rate of energy dissipation 
in an infinite column of ffuid (0 < z < co) of finite cross section be finite. Since 
the dissipation function depends on the squares of the velocity gradients, an 
equivalent requirement is: 

I 

m 

0 Y I2 + I Y’ I”> azz -=c @J. (12) o 

For E > 0 and sulliciently large z, the terms in (6) which are multiplied by p are 
negligible. If they are set equal to zero, there are four linearly independent solutions 
of the resulting system which behave like e--kz, ze-JZZ, ekz, and zeks. It is evident 
that for k > 0 the last two do not satisfy the DC and should be discarded. The 
problem is, therefore, to find the asymptotic behaviour as E + 0 of solutions of 
the system of differential equations (6), which satisfy (8) and the DC (12). 

III. ANALYSIS 

It is convenient to transform the problem by introducing a new independent 
variable f = e-z/iar. The differential equation (6) is then transformed into 

4e2y + WY + GY = 0, 

where 

A,=l “1, 
[ [ 

0 
B1 = - kg - l/3) 

Kc! - l/3) 
0 If - 413 -c$ 1 ’ 

(k” - u”/y) 5 - 4k2/3 
c, = 

- $ [ 

-,7$+-l 
Y E I 

c(+k2 ’ 

(13) 

(14) 

and 8 = 5 dJd[. The positive z axis is mapped into a segment with arg E = --r/2. 
The point z = co corresponds to [ = 0 and z = 0 corresponds to 5 = 1li.w. 
The system (13) has regular singular points at [ = 0 and [ = 413, and an irregular 
singularity at ,$ = a. The DC can be translated into a condition on the behaviour 
of solutions of (13) in the neighborhood of < = 0, while the limiting behaviour 
of the viscous problem in a fixed finite interval [zl , z2] will go over into a condition 
on the asymptotic behaviour of a solution of (13) as f+ UJ along the ray 
arg E = --n/2. 
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In order to solve the viscous problem in the limit as E + 0, it is necessary to 
relate the solutions of (13) about the regular singularity 1: = 0 to the solutions 
of (13) about the irregular singularity 8 = co. More precisely, we require the 
asymptotic developments of the solutions of (13), on the ray arg t = -1sr/2: 
which satisfy the DC, (12). In this section, a numerical procedure is briefly discussed 
which was used successfully to integrate numerically the inherently rimtable 
differential equation (13), and thereby determine the required asymptotic develop- 
ments. 

Since 5 = 0 is a regular singularity of (13), it is possible to develop a fundamental 
set of convergent expansions about this point [9, Chap. 41. It is easily shown that 
the resulting solutions of (13) exhibit the scalar growths Ek5 (lo E) E7;, .&-7G, ad 
(In [) E-” as 5 -+ 0. Only the solutions which grow as E” and (in f) 5” satisfy the 
DC, (12). Elence, imposing the DC is equivalent to eliminating two of the solutions 
of (13). 

About the irregular singularity 5 = w a fundamental set of formal asymptotic 
solutions can be developed. Standard procedures, e.g., see [JO], involving the 
transformation of (13) are complicated since the characteristic growth rates are 
not asymptotically distinct, that is, four distinct exponential rates of growth of 
formal solutions of (13) do not exist. However, it can be shown 17, Appendix B] 
that there exist four solutions of (13) which exhibit the asymptotic grolaths 
f-h, f-h, &+4 exp(2 G +v/%ir), and f-1:4 exp(-2a 2”5/y), where X, and X, are the 
scalars given in (9). Jn the appendix it is shown that the lead terms in the formal 
solutions with algebraic growth correspond to multiples of inviscid solutions. 

For small G > 0, the question of existence and uniqueness of the solution 0:” the 
viscous problem depends primarily on whether or not at least one of the :wo 
solutions satisfying the DC is asymptotic to a nonzero multiple of the exponentially 
growing solution as < -+ co [I, 71. For every computed case it appears that the 
requisite properties are satisfied for existence and uniqueness of the solution to 
the viscous problem. 

The solution of the viscous problem yv&) can be represented as a linear 
combination of any two linearly independent solutions which satisfy the DC. In 
particular, yv&) can be represented as a linear combination of DC,([) and 
DC&‘) where 

DC,(f) = f agp+J:), 
II=0 

a, = [i]; 

DC,(<) = ‘f b.&n+k) + (In f) DC,([), 
t?=O 

The solutions of (13) which exhibit the asymptotic scalar growths [-G: c-%, and 
5-114 exp(*h ds) are denoted by Y,(S), ~~(0, and y,(E), respectively. These 
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four solutions are linearly independent and, hence, yv&) can also be represented 
as a linear combination of these solutions. 

Due to the different asymptotic rates of growth of y&& and y*(t) it follows 
that these solutions are significant in different regions. For example, the boundary 
layer solution y+(t) is significant only in a relatively thin boundary layer near 
z = 0 whose thickness is 0(1/~/a) as E + 0. Similarly, the solution y-0 is impor- 
tant only in a region which is intermediate between large .$ and small e or equiva- 
lently in a region where the kinematic viscosity varies from small to large values. 
For small 5 the solutions DC,@ and DC,([) p rovide the correct means of deter- 
mining yv&). For large [, the asymptotic developments of yl,&) and y&) are 
accurate approximations of these solutions. In order to solve completely the 
viscous problem we require an overlapping region where DC,(f), DC,(t), y&$), 
and y&) can be accurately determined. 

If such an overlapping region exists, then the viscous problem can be solved in 
essentially two steps for small E > 0. First, determine a nonzero linear combination 
of DC([) and DC,(f) which eliminate the boundary layer solution y+(f), that is, 
solve 

and 

C,~DC,(&b) + G~DC,(&,) + WY&,) + G~Y-GO) = DYE 

at a fixed finite value of & . Second, solve 

(18) 

at t1 = l/h. It should be noted that the solution of the viscous problem yvP(l) 
approximately satisfies 

YVP@ = 4{GDC&) + GDG(t~~- (20) 

The solution represented by (20) is modified in the boundary layer. Hence, Eqs. (17) 
and (20) imply that, for large 5 or equivalently small kinematic viscosity, the 
solution of the viscous problem can be approximated by a linear combination of 
inviscid solutions. We are primarily interested in the linear combination of inviscid 
solutions which results in the limit as E -+ 0. The region where the solution of 
the viscous problem is accurately approximated by a linear combination of inviscid 
solutions will be designated the inviscid region. 

The formal asymptotic solutions of (13) will yield accurate approximations 
of actual solutions of (13) for large 5. Hence, it is possible to solve (19) after the 
constant C3 has been determined in (17) and (18). However, implicit in the Eqs. (17) 
and (18) is the requirement that the accurate values of the formal asymptotic 
solutions be continued to fairly small values of 4, or DC,(c) and DC&$) should 
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be continued to large values of t. If a numerical integration of (13) is considered, 
then it is preferable to consider the integration proceeding in the direction of 
decreasing ( [ /. It can be shown [7] that there is at most an algebraic magnificaticn 
of the initial relative error if solutions of (13) are computed exactly in the direction 
of decreasing 1 E 1. This can be shown despite the fact that solutions of (13) exhibit 
different exponential rates of growth. Since only a finite number of digits are 
retained in the process of computing, some care must be exercised in performing 
the calculations. Roughly speaking, it is necessary to append a process to the 
numerical integration of (13) which eliminates the possibility of ill-conditioning 
of a fundamental set of solutions. Frequently, as a bonus, a reasonable attempt 
at ensuring linear independence of such a fundamental set results in an elTective 
control of inherent error growth, e.g., see [6, 71. 

The inherent instability of (13) affects the numerical calculations in a rather 
peculiar manner. For example, suppose one considers the problem of calculating 
an approximation of yr(c). For an integration of (.13) along arg 5 = -r/2 and 
in the direction of decreasing 1 ,$ /, the solution y,(t) is exponentially dominated 
by Y-(O, i.e., Y-C-) g rows exponentially fast whereas y,(t) exhibits algebraic growth. 
Hence, it is anticipated that the calculation of y,(t) may be very difficult. However, 
n(f) is only required to have a prescribed asymptotic expansion (see the appendix). 
The asymptotic properties of y,(S) are satisfied by a family of solutions of (134 
where two distinct members of the family differ by a multiple of y-(E). Arbitrary 
multiples of y-(,0 can be added to y&j with no modification of the asymptotic 
properties of the resultant vector. Thus, the goal is to approximate a member of 
a family of solutions of (13) rather than a specific solution of (13). 

The only numerical difficulty which results from the inherent instability of (X3j 
is that the multiple of y-(<), introduced via an error , can grow to such proportions 
that it masks ~~(0, i.e., several significant decimal digits are required to merely 
compute the useless multiple of y-(Q. In order to control the multiple of y-([j 
present in the numerical approximation of y,(t), it is sufficient to append some 
process to the numerical integration of (13) which ensures that yl(ej is linearly 
independent of y-(f). 

The numerical integration of (13) over a large e interval was carried out by 
breaking the large 5 interval into several smaller intervals. The numerical integra- 
tion of (13) begins at a large value of f, where the initial vector is computed by 
means of an asymptotic expansion. At the end of the first subinterval, the numerical 
approximation of yl(<) ’ f IS arced to have a zero component corresponding to the 
largest component of y-@ by adding the proper multiple of y-(f) to the approxi- 
mation of y,(&. The resultant vector obtained at the end of the first subintervai 
becomes the initial vector for a numerical integration on the second f interval. 
This process is repeated on each 8 subinterval. Similar procedures are used to 
calculate y&j. 
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Implicit in the algorithm outlined for the calculation of yl(S) is the requirement 
that y-(E) be accurately determined. The vector y-(t) is easily calculated since 
this solution has dominant exponential growth for a numerical integration in the 
direction of decreasing 1 [ I. In addition, by means of (15) and (16), it is possible 
to compute DC,([) and DC,@) and, hence, the viscous solution yPv(<) can be 
determined. A more detailed description of the algorithm and an error analysis is 
contained in [7]. 

The numerical method described above is not the only one which could have 
been employed. A convenient version of the Gaussian elimination scheme has 
frequently been used for similar problems (see, e.g., [I 1, 5, or 31). This procedure 
would be applied directly to the system of differential Eqs. (6) rather than to (13). 
The advantage of our method is that an error analysis and a convenient check on 
the growth of the error are available. The numerical integration was performed 
in single precision on an IBM 7094, and the results appear to be correct to four 
significant figures. 

14 

12 

10 

8 

-6 

FIG. 2. In I C 
defined in (21). 

I I I I I I 
-5 -4 -3 -2 -1 0 '1 

an k 

at the frequency of the Lamb wave and at neighboring frequencies. C is 
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IV. COMPUTATIONS AND CowLusrom 

The solution of the viscous problem for small E > 0 is obtained by solving 
Eqs. (17)-(19). The most difficult numerical problem encountered is the determina- 
tion of vectors at a fixed finite value of 5 which specify the different asymptotic 
solutions. There are several cases which must be considered separately. The 
individual cases can be classified according to the character of the exponents 
A, , A, in (9). We are primarily interested in those cases which modify the conclu- 
sions reached by Yanowitch [lt 21 and Lindzen [4]. 

Before proceeding with a summary of the calculations, it is useful to note that 
for the earth’s atmosphere the dimensionless parameter E is comparable to 10F1. 
The dimensionless parameters k and G, when equal to unity, correspond to a 
horizontal wavelength of 45 km and a frequency of 2.5 radians per minute, respec- 
tively. 

I I I I f I I ! 
” 0.2 0.4 (1.6 0.s 1.0 i.2 1.4 1.6 

e 

FIG. 3. Logarithm of the modulus of the reflection coefficient for .k = 0.005 and k = 0.05. 
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Case 1. The exponents A, and A, are real and ($/y - k”) # 0. In this case 
the solutions are nonoscillatory in the vertical direction and the results are similar 
to the ones in [l, 21. 

Case 2. Lamb wave, S/y - k” = 0, A, = l/y, A, = (y - 1)/y. The imiscid 
problem has a free oscillation, with the solution given by (11). 

For the viscous problem, 

Yv&> = C{YdZ> + DYlW (21) 

in the inviscid region, and the constants C and B can be determined from dl , C, , 
and d2 in (19). It is easy to show that 

D = o((~a)“+~> as E -+ 0, (22) 

i.e., that D -+ 0 as E + 0. Thus, yv&) --+ Cy1(-7), which shows that in the inviscid 
region the solution approaches the solution of the inviscid problem (the Lamb 
wave). 

0 

GRAVITY --- 1 

-6- 
0 0.2 0.4 0.6 0.8 1.0 I.2 1.4 1.6 1.8 

E 

FIG. 4. Logarithm of the modulus of the reflection coefficient for k = 0.25. 
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It is to be expected that the system is resonant when E is small and ~3 = yk”. 
This is, in fact, the case and one can show that 

c = O((EcTp+) as ~-0. (23) 

The results of the computations indicate that a change in G of one percent from 
the resonant value reduces / C / by a factor of about 1000 (see Fig. 2). 

Case 3. The roots of the dispersion relation are ,complex and the inviscid 
solutions are wavelike in the vertical coordinate. 

In the inviscid region the solution of the viscous problem can be approximated 
by 

Y”&> m -4:y,w c KtYl(Z>>, (r&q 

where y,(z) and y2(z) are inviscid solutions normalized so that the first (horizon”al) 
component is one at z = 0. The solution with subscript two (one) is the inviscid 
solution with upward (downward) energy propagation. The scalar & is then 
defined to be the reflection coefficient. 

FIG. 5. Logarithm of the modulus of the reflection coefficient for k = 0.5~ 
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In order to distinguish between the acoustic and gravity reflection coefficients 
it is convenient to introduce the notation KRA and KRG . Although the scalar C, 
in Eqs. (17)-(19) tends to a limit as & -P co, that is, as E -+ 0, it is easily shown 
that KRA and KRG do not approach limiting values. The transition region or 
reflecting2 layer shifts toward z = 00 as E -+ 0. Thus, the phase of the reflected 
wave is altered during this process and no limiting value exists. The constant C, 
is invariant since Eqs. (17) and (18) are invariant as E + 0. The invariance of C, 
implies that j KRG 1, arg KRG + 2p In(l/e), 1 KRA j, and arg KRA - 2/3 In(l/E) 
approach a limit as E + 0, where ,8 is the dimensionless vertical wave number 
defined in (9b). 

Some of the results of the computations for Case 3 are shown in Figs. 3-7, 
where the magnitudes of the reflection coefficients are plotted as functions of the 
vertical wave number /3 for various values of the horizontal wave number k. For 
small and large values of k (k < 0.25 and k > 1.0) it can be seen that the reflection 

-.I 

-5 

.6l I I I I I I I I 
” 0.2 0.4 0.6 0.8 1.0 l.? 1.4 1.6 : 

FIG. 6. Logarithm of the modulus of the reflection coefficient for k = 1.0. 

2 The reflecting layer is in the vicinity of p(z) = E. For a more complete discussion of the re- 
flecting layer and the transition region: see [I, 71. 
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coefficients are very close to e- ~6, which agrees with the results of [I, 2, and 41. 
However, for intermediate values of k there is a noticeable deviation from this 
behaviour (see Figs. 4-6). 

For p approximately equal to k it was observed that 7-r/3 - In j KRG j and 
~$3 - In 1 K,, 1 achieved a positive local maximum. For most of the calculations” 
z-/3 - In j KR 1 was a positive quantity and 

I &A@, P>I < I &dk P)! < cma. (?<:;: f&--f 
It should be noted that the results of the computations depend on the value of y9 
and while (25) is a useful summary of the results for y = 1.4, it does not hold for 
all values of y. It was found, for example, that, for y = 4.0, the acoustic wave 
reflection coefficient is in much better agreement with e-“” than the gravity wave 
reflection coefficient. 

-6 I I I I I I / I 
0 0.2 0.4 0.6 0.8 1.0 1.2 1.1 1.6 1.9 

FIG. i. Logarithm of the modulus of the reflection coeflkient for k = 1.5. 

3 For Ic = 0.005 (horizontal wavelength of 9000 km), it was found that j K&k, p)I exceeded 
exp(-~9) slightly. However, 1 K&k, fl)i - exp(-T/3) was very small and of the same order 2s 

the error for the numerical integration of (13). 

58r/8i’z-6 
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It is evident that, in a fluid with an exponentially decreasing density at large 
altitudes, waves, which in the absence of dissipation would propagate upward, 
may be reflected downward. The reflection coefficient however, may be sensitive 
to various features of the fluid model or of the solution. For example, the extreme 
case of artificial (Rayleigh) viscosity produces no reflection altogether. On the 
other hand, both viscosity and Newtonian cooling produce the same value for 
the magnitude of the reflection coefficient for the case of long waves [4], and the 
present study shows that compressibility has a nonnegligible effect when the 
horizontal and vertical scales of the motion are of the same order of magnitude. 
Some solutions for a viscous and thermally conducting isothermal atmosphere 
(which will be described elsewhere) indicate that for a fairly wide range of Prandtl 
number the magnitude of the reflection coefficient is determined mostly by viscosity. 
However, a general conclusion of this type is not warranted without a more 
complete investigation. 

APPENDIX 

About the irregular singularity E = co it is possible to develop a fundamental 
set of formal solutions. This can be accomplished, for example, by transforming 
the differential equation (13) until a guess can be made regarding the structure 
of the formal solutions. The tactic of transforming (13) is considered in [7, lo]. 
However, for the viscous problem it is not necessary to obtain a fundamental set 
of formal solutions. In particular, the boundary layer and transition layer solutions 
are of secondary importance, and any multiple of these solutions is useful in 
solving the viscous problem, that is, Eqs. (17)-(19). 

It was found that multiples of the boundary layer y+(f) and transition layer 
y-(f) solutions are easily computed without developing the formal expansions with 
asymptotic scalar growths of [l/* exp(f2o VI%). The transition layer solution 
has dominant exponential growth for a numerical integration of (13) which 
proceeds in the direction of decreasing j f / on arg f = -n/2. Hence, numerically 
integrating (13) with a nonzero initial vector over a sufficiently large 5 interval 
in the direction of decreasing 1 5 I results in an accurate approximation of a 
multiple of the transition layer solution. Similarly, for a numerical integration 
of (13) in the direction of increasing [ t 1 we obtain a multiple of the boundary 
layer solution. 

The formal solutions with algebraic growth in 5 are easily determined by con- 
sidering the asymptotic developments 
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Substituting (Al) into (13) yields 

Relation (AZ!) is the dispersion relation. The inviscid characteristic growth rates, 
i.e., X, and h, in (9), satisfy (AZ). Aside from a scaling constant: f-” corresponds 
to exp(Xz). Hence, the formal solution (Al) exhibits inviscid growth In addition, 
the lead vectors a,, correspond to the inviscid vector solutions: 

a, = L 
where (cr’/y - k”) is nonzero; 

(As) 

where (+ - 12”) is zero or nearly zero and h, -=c & < h, . 
Thus, the lead term a,e-h in the formal expansion (Al) corresponds to an 

inviscid solution. A similar result is obtained for the limiting case h, = h, -= + 
although (Al) must be modified [7]. 

REFERENCES 

1. M. YANOWITCH, J. Fluid Mech. 29 (1967), 209. 
2. M. YANO~VITCH, Canad. J. Phys. 45 (1967), 2003. 
3. M. YANOWITCH, J. Computational Phys. 4 (1969), 531. 
4. R. LINDZEN, Canud. J. P~Jw. 46 (1968), 1835. 
5. R. LINDZEN AND S. CHAPIVIAN, Space Sci. Reo. 10 (1969), 3. 
6. S. D. CONTE, SIAM Rec. 8 (1966), 309. 
7, R. M. MYERS, “Small Oscillations of a Viscous Isothermal Atmosphere,” TM X-58051, 

National Aeronautics and Space Administration, Washington, D.C., 1970. 
8. H. I,-, “Hydrodynamics,” 6th ed., pp. 541-543, Cambridge University Press, London/ 

New York, 1932. 
9. E. A. CODDINGTON AND N. LEVINSON, “Theory of Ordinary Differential Equations,” McGraw- 

Hill, New York, 1955. 
IO. w. WASOW, “Asymptotic Expansions for Ordinary Differential Equations,” John Wiley 

and Sons, New York, 1955. 
11. Pi. D. RICHTFJYER AND K. W. MORTON, ‘DiKerence Methods for Initial Value Problems,” 

2nd ed., Interscience, New York, 1967. 


